Programmable, High-Density Switch
As data centers and cloud service providers embrace new high-performance servers and distributed applications, they increasingly need dense 100/40 GbE switches for leaf-and-spine topologies. Traditionally, infrastructure has been slow to evolve, and it can be a barrier to innovation. With flexibility at all layers of the data center stack, IT teams can drive agility. The Brocade® SLX® 9240 Switch is designed to help organizations stay ahead of this application- and data-driven network transformation without compromising performance.

Programmable Switching Platform
The Brocade SLX 9240 delivers the high-density 100 GbE connectivity required by high-end enterprise and cloud data centers. The underlying hardware is programmable, enabling a faster transition to emerging protocols and new technologies. Workload visibility combined with end-to-end network visibility helps infrastructure teams continue to improve SLAs as they increase network virtualization. In addition, the Brocade SLX 9240, coupled with Brocade Workflow Composer™ and Brocade Workflow Composer Automation Suites, simplifies end-to-end network management, including turnkey provisioning, validation, and troubleshooting of workflows.

Brocade SLX 9240 Overview
The Brocade SLX 9240 is a fixed 100/40 GbE spine switch in a 1U form factor that supports 24 MB of dynamically shared packet buffer and an overall throughput of 3.2 Tbps/1.3 Bpps. It can connect to either 40 GbE or 100 GbE uplinks from leaf switches, such as the Brocade SLX 9140. By leveraging this high-density switch, data center networks can dramatically improve power, space, and cooling efficiencies, even at scale. A programmable ASIC enables the adoption of new protocols and technologies through an OS, rather than a forklift upgrade. Payload timestamping improves the accuracy of performance SLA setting and measurement.

HIGHLIGHTS
• Delivers agility at all layers of the data center stack
• Provides high-density 100 GbE spine-leaf connectivity in a 1U fixed form factor
• Includes a programmable ASIC to accelerate adoption of new protocols and technologies
• Utilizes the Brocade SLX Insight Architecture and Brocade SLX Visibility Services for flexible, real-time monitoring of virtualized, dynamic workloads to streamline troubleshooting
• Provides payload timestamping to more accurately set and measure performance SLAs
• Incorporates turnkey and customizable cross-domain workflow automation for the entire network lifecycle through Brocade Workflow Composer and network automation suites
Modular, Virtualized Operating System
The Brocade SLX 9240 runs Brocade SLX-OS, a fully virtualized Linux-based operating system that delivers process-level resiliency and fault isolation. Brocade SLX-OS supports advanced switching features and is highly programmable with support for REST API with the YANG data model, Python, and NETCONF—enabling full lifecycle automation with Brocade Workflow Composer. It is based on Ubuntu Linux, which offers all the advantages of open source and access to commonly used Linux tools.

Brocade SLX-OS runs in a virtualized environment over a KVM hypervisor, with the operating system compartmentalized and abstracted from the underlying hardware. The core operating system functions for the Brocade SLX 9240 are hosted in the system VM.

This approach provides clean failure domain isolation for the switch operating system while leveraging the x86 ecosystem—thereby removing single-vendor lock-in for system tools development and delivery. In addition, it supports a guest VM, which is an open KVM environment for running third-party and customized monitoring, troubleshooting, and analytics applications.

Embedded Network Visibility
The Brocade SLX Insight Architecture and Brocade SLX Visibility Services deliver a new approach to network monitoring and troubleshooting that makes it faster, easier, and more cost-effective to obtain the comprehensive, real-time visibility needed for network operations and automation. This innovative approach provides comprehensive visibility from the network to the workload, and triggers network actions. These actions can address end-user application or service needs, and provide context-rich data for additional analysis, automation, and reporting.

For details, read *Visibility in the Modern Data Center with Brocade Switches and Routers*.

Brocade SLX Insight Architecture
The Brocade SLX Insight Architecture leverages an innovative combination of Brocade SLX-OS software and Brocade SLX hardware features to provide pervasive visibility into the network without impacting normal network operation or performance.

This flexible and open solution enables organizations to deploy their choice of third-party or customized monitoring and troubleshooting tools directly in the network—providing real-time visibility to meet specific business and operational needs across the network. This enables organizations to improve service and application assurance, as well as dramatically reduce operational impact and cost.

As shown in Figure 1, key components of the Brocade SLX Insight Architecture include:

- **Guest VM**: The Brocade SLX Insight Architecture provides an open KVM environment that runs third-party applications and customized monitoring, troubleshooting, and analytics tools. Enabled by Brocade SLX-OS, this preconfigured guest VM is on each Brocade SLX 9240 Switch. It hosts third-party network operations and analytics applications on every device, extending visibility to the entire network.

![Figure 1: The Brocade SLX Insight Architecture.](image-url)
• **Flexible streaming:** The Brocade SLX Insight Architecture provides API streaming, enabling captured data to be delivered to analytics applications off the platform for additional analysis, visualization and reporting, or logging and archiving.

• **Dedicated analytics storage:** The Brocade SLX 9240 provides 1.28 GB of on-device storage dedicated to visibility applications running in the guest VM, providing real-time data capture for easy and fast access.

Brocade SLX Visibility Services

As network complexity increases, isolated data points at the physical or virtual network layer provide little insight into the criticality of an issue. For example, bursty storage backup traffic slowing down an internal Web site is a lower priority than a slowdown for a revenue-generating application. Network administrators need workload context across the network to ensure the appropriate action is taken in each case.

Brocade SLX Visibility Services help simplify network operations with embedded visibility from the physical network to application workloads. By combining physical and virtual network traffic data with overlay and workload information across multiple network layers, this solution enables diverse, rule-based actions to maintain performance and mitigate risk. Other key functions include:

• Pervasive visibility at scale across the network for seamless support of highly distributed multitier application workloads

• **Rich multilayer classification** (such as IP and MAC addresses, port numbers, VNIs) and workload matching with network-wide scale

• Automated application of rule-based actions (such as count, drop, mirror, sFlow) to incoming network traffic

• Further actions outside the switch, including pushing context-rich data to the Brocade SLX Insight Architecture, Brocade Workflow Composer, and third-party analytics and monitoring applications

Brocade SLX Visibility Services are embedded into Brocade SLX switches, reducing the operational complexity of managing network visibility at scale (see Figure 2).

Cross-Domain Automation for IT Operations

To unleash new levels of business innovation and competitive advantage, many organizations are embracing digital transformation. Their success depends on building an agile business, and, in the digital era, IT agility is achievable only with centralized, cross-domain automation.

Brocade SLX 9240 leverages Brocade Workflow Composer, powered by StackStorm. With its nearly 2,000 pre-built points of integration, this DevOps-inspired, event-driven automation platform enables cross-domain workflows and straightforward integration with disparate IT technologies, platforms, and policies to provide split-second, reliable execution of service provisioning and remediation.

Brocade Workflow Composer Automation Suites are specifically designed to speed up time-to-value by providing complete network lifecycle automation. For more details, read the Brocade Workflow Composer Automation Platform At A Glance.

Speed Up Time to Value with Turnkey Automation Suites

As organizations address the primary barrier to IT agility—the network—they need automation that is easy to deploy by operators with limited skills, that delivers value immediately, and that provides more than Day 0 provisioning. Brocade Workflow Composer Automation Suites (Figure 3) provide turnkey, customizable network automation for out-of-box functionality that delivers immediate
value to the business, while the workflows provide automation for the entire lifecycle: provisioning, validation, troubleshooting, and remediation. As a result, IT organizations can adopt automation at their own pace, deploy services, resolve issues faster, and eliminate a barrier to IT agility. For details, read the Brocade Workflow Composer Automation Suites At A Glance.

Brocade Global Services
Brocade Global Services has the expertise to help organizations build scalable, efficient cloud infrastructures. Leveraging 20 years of expertise in storage, networking, and virtualization, Brocade Global Services delivers world-class professional services, technical support, and education services, enabling organizations to maximize their Brocade investments, accelerate new technology deployments, and optimize the performance of networking infrastructures.

Acquisition Options That Match Balance Sheet Objectives
Successful network deployments drive business forward, providing technical and financial agility. Brocade offers the broadest financing models, from traditional leasing to Brocade Network Subscription. Network-as-a-Service allows operators to subscribe to network assets today then upgrade on demand, scale up or down, or return them with 60-day notification. Brocade Network Subscription plans can be structured to meet IASC guidelines for OpEx or CapEx treatment to align with financial goals. Learn more at www.nonetworkcapex.com.

Maximizing Investments
To help optimize technology investments, Brocade and its partners offer complete solutions that include professional services, technical support, and education. For more information, contact a Brocade sales partner or visit www.brocade.com.

DEVOPS-INSPIRED AUTOMATION
Streamline end-to-end IT operations and increase IT agility with event-driven, cross-domain automation.

Brocade SLX 9240 and Brocade Workflow Composer
The Brocade SLX 9240, combined with Brocade Workflow Composer and the Brocade Workflow Composer Automation Suites, delivers automation for provisioning, validation, troubleshooting, and remediation of network services:

- Unleash IT agility by eliminating cross-domain service provisioning, troubleshooting, and remediation delays
- Accelerate time-to-value and time-to-resolution with automation suites designed, built, and tested for Brocade networks; easily customized as skills and requirements change
- Leverage the power of DevOps methodologies and popular open source technologies that embrace industry best practices, as well as a thriving technical community for peer collaboration and innovation
- Increase agility beyond Day 0 by automating the entire network lifecycle—provisioning, validation, troubleshooting, and remediation of Brocade network infrastructure

Figure 3: The Brocade Workflow Composer Automation Suite architecture.
Brocade SLX 9240 Switch Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form factor</td>
<td>1U</td>
</tr>
<tr>
<td>Switching bandwidth (data rate, full duplex)</td>
<td>3.2 Tbps</td>
</tr>
<tr>
<td>Forwarding capacity (data rate, full duplex)</td>
<td>(L2) 2.4 Bpps, (L3) 600 Mpps line-rate performance</td>
</tr>
<tr>
<td>Dimensions and weight</td>
<td>440 cm; 173.2 in. (Width), 444.7 cm; 175 in. (Depth) 4.37 cm; 1.72 in. (Height) 9.07 kg; 20 lb</td>
</tr>
<tr>
<td>100/40 GbE ports</td>
<td>32</td>
</tr>
<tr>
<td>Power supplies</td>
<td>Two internal, redundant, field-replaceable, load-sharing AC or DC power supplies</td>
</tr>
<tr>
<td>Cooling fans</td>
<td>Five field-replaceable fans</td>
</tr>
<tr>
<td>Airflow</td>
<td>Rear-to-front or front-to-rear airflow</td>
</tr>
<tr>
<td>Dynamically shared packet buffer</td>
<td>24 MB</td>
</tr>
<tr>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>Power inlet (AC)</td>
<td>C13</td>
</tr>
<tr>
<td>Input voltage</td>
<td>90 V to 264 V or 40.8 V to 60 V DC</td>
</tr>
<tr>
<td>Input line frequency</td>
<td>47 Hz to 63 Hz</td>
</tr>
<tr>
<td>Inrush current</td>
<td>25 A peak</td>
</tr>
<tr>
<td>Maximum current</td>
<td>12 A/AC, 14 A/DC</td>
</tr>
<tr>
<td>Typical power consumption</td>
<td>184 W Two AC PSU, five fan trays, 10% traffic, low fan speed</td>
</tr>
<tr>
<td>Maximum power consumption</td>
<td>581 W Two AC PSU, six fan trays, 100% traffic, high fan speed</td>
</tr>
<tr>
<td>Power supply rated maximum (AC)</td>
<td>650 W</td>
</tr>
<tr>
<td>Switch power consumption</td>
<td>DC PSU 563 W; AC PSU 581 W</td>
</tr>
<tr>
<td>Environment</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>5% to 95% at 50°C</td>
</tr>
<tr>
<td>Altitude</td>
<td>Up to 3,000 m safety; 60 m to 4,000 m operational</td>
</tr>
<tr>
<td>Shock (operational)</td>
<td>20 G, 11 ms, half-sine wave</td>
</tr>
<tr>
<td>Vibration (operational)</td>
<td>1 G sine, 0.4 gms random, 5 Hz to 500 Hz</td>
</tr>
<tr>
<td>Airflow</td>
<td>134 CFM (estimated with two PSU, six fan trays)</td>
</tr>
<tr>
<td>Acoustics (25°C)</td>
<td>52 dBA</td>
</tr>
<tr>
<td>MTBF (25°C)</td>
<td>327,539 hours</td>
</tr>
<tr>
<td>Specifications</td>
<td></td>
</tr>
<tr>
<td>Connector options</td>
<td>• 10 GbE SFP+ (via splitter cable)</td>
</tr>
<tr>
<td></td>
<td>• 100 GbE QSFP-28</td>
</tr>
<tr>
<td></td>
<td>• 40 GbE QSFP+</td>
</tr>
<tr>
<td></td>
<td>• Out-of-band Ethernet management: 10/100/1000 Mbps RJ-45</td>
</tr>
<tr>
<td></td>
<td>• Console management: RJ45 serial port and USB type-C port with serial communication device class support Storage: USB port, standard-A plug</td>
</tr>
<tr>
<td></td>
<td>For the latest information about supported optics, please visit http://brocade.com/optics.</td>
</tr>
<tr>
<td>Specification</td>
<td>Value</td>
</tr>
<tr>
<td>---</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Maximum MAC addresses</td>
<td>Up to 48,000</td>
</tr>
<tr>
<td>Maximum VLANs</td>
<td>4,096</td>
</tr>
<tr>
<td>Maximum routes (in hardware)</td>
<td>Up to 40,000</td>
</tr>
<tr>
<td>Maximum ACLs</td>
<td>512</td>
</tr>
<tr>
<td>Maximum members in a standard LAG</td>
<td>16</td>
</tr>
<tr>
<td>Maximum per-port priority pause level</td>
<td>8</td>
</tr>
<tr>
<td>Maximum switches an mLAG can span</td>
<td>2</td>
</tr>
<tr>
<td>Maximum IPv4 unicast routes</td>
<td>48,000</td>
</tr>
<tr>
<td>Maximum IPv6 unicast routes</td>
<td>8,000</td>
</tr>
<tr>
<td>DCB priority flow control classes</td>
<td>4</td>
</tr>
<tr>
<td>Maximum jumbo frame size</td>
<td>10,000 bytes</td>
</tr>
<tr>
<td>QoS priority queues (per port)</td>
<td>8</td>
</tr>
</tbody>
</table>

IEEE Compliance

- IEEE 802.1D Spanning Tree Protocol
- IEEE 802.1s Multiple Spanning Tree
- IEEE 802.1w Rapid Reconfiguration of Spanning Tree Protocol
- IEEE 802.3 Ethernet
- IEEE 802.3ad Link Aggregation with LACP
- IEEE 802.3ae 10G Ethernet
- IEEE 802.1Q VLAN Tagging
- IEEE 802.1p Class of Service Prioritization and Tagging
- IEEE 802.1v VLAN Classification by Protocol and Port
- IEEE 802.1AB Link Layer Discovery Protocol (LLDP)
- IEEE 802.3x Flow Control (Pause Frames)
- IEEE 802.3ab 1000BASE-T
- IEEE 802.3z 1000BASE-X

RFC Compliance

- RFC 768 User Datagram Protocol (UDP)
- RFC 783 TFTP Protocol (revision 2)
- RFC 791 Internet Protocol (IP)
- RFC 792 Internet Control Message Protocol (ICMP)
- RFC 793 Transmission Control Protocol (TCP)
- RFC 826 ARP
- RFC 854 Telnet Protocol Specification
- RFC 894 A Standard for the Transmission of IP Datagram over Ethernet Networks
- RFC 959 FTP
- RFC 1027 Using ARP to Implement Transparent Subnet Gateways (Proxy ARP)
- RFC 1112 IGMP v1
- RFC 1157 Simple Network Management Protocol (SNMP) v1 and v2
- RFC 1305 Network Time Protocol (NTP) Version 3
- RFC 1492 TACACS+
- RFC 1519 Classless Inter-Domain Routing (CIDR)
- RFC 1584 Multicast Extensions to OSPF
- RFC 1765 OSPF Database Overflow
- RFC 1812 Requirements for IP Version 4 Routers
- RFC 1997 BGP Communities Attribute
- RFC 2068 HTTP Server
- RFC 2131 Dynamic Host Configuration Protocol (DHCP)
- RFC 2154 OSPF with Digital Signatures (Password, MD-S)
- RFC 2236 IGMP v2
- RFC 2267 Network Ingress Filtering Option—Partial Support
- RFC 2328 OSPF v2 RFC 2385 Protection of BGP Sessions with the TCP MDS Signature Option
- RFC 2370 OSPF Opaque Link-State Advertisement (LSA)
- RFC 2375 IPv6 Multicast Address Assignments
- RFC 2439 BGP Route Flap Damping
- RFC 2460 Internet Protocol, Version 6 (v6) Specification (on management interface)
- RFC 2462 IPv6 Stateless Address Auto-Configuration
- RFC 2464 Transmission of IPv6 Packets over Ethernet Networks (on management interface)
- RFC 2545 Use of BGP-MP Extensions for IPv6
- RFC 2474 Definition of the Differentiated Services Field in the IPv4 and IPv6 Headers
- RFC 2571 An Architecture for Describing SNMP Management Frameworks
- RFC 2710 Multicast Listener Discovery (MLD) for IPv6
- RFC 2711 IPv6 Router Alert Option
- RFC 2740 OSPFv3 for IPv6
- RFC 2865 Remote Authentication Dial-In User Service (RADIUS)
Brocade SLX 9240 Software Specifications (continued)

General protocols (continued)
- RFC 3101 The OSPF Not-So-Stubby Area (NSSA) Option
- RFC 3137 OSPF Stub Router Advertisement
- RFC 3176 sFlow
- RFC 3392 Capabilities Advertisement with BGPv4
- RFC 3411 An Architecture for Describing SNMP Frameworks
- RFC 3412 Message Processing and Dispatching for the SNMP
- RFC 3413 Simple Network Management Protocol (SNMP) Applications
- RFC 3623 Graceful OSPF Restart—IETF Tools
- RFC 3768 VRRP
- RFC 4271 BGPv4
- RFC 4443 ICMPv6 (replaces 2463)
- RFC 4456 BGP Route Reflection
- RFC 4724 Graceful Restart Mechanism for BGP
- RFC 4750 OSPFv2.MIB
- RFC 4861 IPv6 Neighbor Discovery
- RFC 4893 BGP Support for Four-Octet AS Number Space
- RFC 5082 Generalized TTL Security Mechanism (GTSM)
- RFC 5880 Bidirectional Forwarding Detection (BFD)
- RFC 5881 Bidirectional Forwarding Detection (BFD) for IPv4 and IPv6 (Single Hop)
- RFC 5882 Generic Application of Bidirectional Forwarding Detection (BFD)
- RFC 5883 Bidirectional Forwarding Detection (BFD) for Multihop Paths
- RFC 5942 IPv6 Neighbor Discovery
- RFC 7432 BGP-EVPN—Network Virtualization Using VXLAN Data Plane

MIBs
- RFC 4292 IP Forwarding MIB
- RFC 4293 Management Information Base for the Internet Protocol (IP)
- RFC 7331 BFD MIB
- RFC 3826 SNMP-USM-AES-MIB
- RFC 4273 BGP-4 MIB
- RFC 2863 The Interfaces Group MIB
- RFC 4133 Entity MIB (Version 3); rmon.mib, rmon2.mib, sflow_v5.mib, bridge.mib, pbridge.mib, qbridge.mib, rstp.mib, lag.mib, lldp.mib, lldp_ext_dot1.mib, lldp_ext_dot3.mib, RFC 4022 TCP MIB
- RFC 4113 UDP.MIB
- RFC 44750 OSPFv2.MIB

Layer 2 Switching
- Conversational MAC Learning
- Virtual Link Aggregation Group (vLAG) spanning
- Layer 2 Access Control Lists (ACLs)
- Address Resolution Protocol (ARP) RFC 826
- Layer 2 Loop prevention in an overlay environment
- MLD Snooping
- IGMP v1/v2 Snooping
- MAC Learning and Aging
- Link Aggregation Control Protocol (LACP) IEEE 802.3ad/802.1AX
- Virtual Local Area Networks (VLANs)
- VLAN Encapsulation 802.1Q
- Per-VLAN Spanning Tree (PVST+/PVST+)
- Rapid Spanning Tree Protocol (RSTP) 802.1w
- Multiple Spanning Tree Protocol (MSTP) 802.1s
- STP PortFast, BPDU Guard, BPDU Filter
- STP Root Guard
- Pause Frames 802.3x
- Static MAC Configuration
- Multi-Chassis Trunking (MCT)

Layer 3 Routing
- Border Gateway Protocol (BGP4+)
- DHCP Helper
- Layer 3 ACLs
- IGMPv2
- OSPF v2/v3
- Static routes
- IPv4/IPv6 ACL
- Bidirectional Forwarding Detection (BFD)
- 64-Way ECMP
- VRF Lite
- VRF-aware OSPF, BGP, VRRP, static routes
- VRRP v2 and v3
- IPv4/IPv6 dual stack
- ICMPv6 Route-Advertisement Guard
- Route Policies
- IPv6 ACL packet filtering
- BGP Additional-Path
- BGP-Allow AS
- BGP Generalized TTL Security Mechanism (GTSM)
- BGP Peer Auto Shutdown
- IPv6 routing
- OSPF Type-3 LSA Filter
- Wire-speed routing for IPv4 and IPv6 using any routing protocol
- BGP-EVPN Control Plane Signaling RFC 7432
- BGP-EVPN VXLAN Standard-based Overlay
- Multi-VRF
- IP Unnumbered Interface
- VRRP-E
Automation and Programmability

- gRPC Streaming protocol and API
- REST API with YANG data model
- Python
- PyNOS libraries
- DHCP automatic provisioning
- NETCONF API

High Availability

- BFD

Quality of Service

- ACL-based QoS
- Two Lossless priority levels for QoS
- Class of Service (CoS) IEEE 802.1p
- DSCP Trust
- DSCP to Traffic Class Mutation
- DSCP to CoS Mutation
- DSCP to DSCP Mutation
- Random Early Discard
- Per-port QoS configuration
- ACL-based Rate Limit
- Dual-rate, three-color token bucket
- ACL-based remarking of CoS/DSCP/Precedence
- ACL-based sFlow
- Scheduling: Strict Priority (SP), Deficit Weighted Round-Robin (DWRR)

Management and Monitoring

- Zero-Touch Provisioning (ZTP)
- IPv4/IPv6 management
- Industry-standard Command Line Interface (CLI)
- NETCONF API
- REST API with YANG data model
- SSH/SSHv2
- Link Layer Discovery Protocol (LLDP) IEEE 802.1AB
- MIB II RFC 1213 MIB
- Syslog (RASlog, AuditLog)
- Management VRF
- Switched Port Analyzer (SPAN)
- Telnet
- SNMP v1, v2C, v3
- sFlow version 5
- Out-of-band management
- RMON-1, RMON-2
- NTP
- Management Access Control Lists (ACLs)
- Role-Based Access Control (RBAC)
- Range CLI support
- Python
- DHCP Option 82 Insertion
- DHCP Relay
- Timestamping

Security

- Port-based Network Access Control 802.1X
- RADIUS
- AAA
- TACACS+
- Secure Shell (SSHv2)
- TLS 1.1, 1.2
- HTTP/HTTPS
- BPDU Drop
- Lightweight Directory Access Protocol (LDAP)
- Secure Copy Protocol
- Control Plane Policing (CPP)
- LDAP/AD
- SFTP
- Port Security
Brocade SLX 9240 Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR-SLX-9240-32C-AC-F</td>
<td>Brocade SLX 9240-32C Switch AC with front-to-back airflow. 32×100 GbE/40 GbE</td>
</tr>
<tr>
<td>BR-SLX-9240-32C-DC-F</td>
<td>Brocade SLX 9240-32C Switch DC with front-to-back airflow. 32×100 GbE/40 GbE</td>
</tr>
<tr>
<td>BR-SLX-9240-32C-AC-R</td>
<td>Brocade SLX 9240-32C Switch AC with back-to-front airflow. 32×100 GbE/40 GbE</td>
</tr>
<tr>
<td>BR-SLX-9240-32C-DC-R</td>
<td>Brocade SLX 9240-32C Switch DC with back-to-front airflow. 32×100 GbE/40 GbE</td>
</tr>
</tbody>
</table>

Upgrade Licenses

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR-SLX-9240-ADV-LIC</td>
<td>Advanced License for BR-SLX-9240</td>
</tr>
</tbody>
</table>